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1. INTRODUCTION

The objectives of this report are to present the results of control systems analysis and their
potential applications to control systems synthesis for high performance aircraft, and identify a
proven, tractable and portable methodology to quanufy the robust stability and performance of
highly integrated digital fly-by-wire control systems. These systems are characterized by multipie
distributed sensing, processing, and actuator elements interconnected by a time-division-
multiplexed digital data bus layer. The aircraft division of Naval Air Warfarc Center at
Warminster, PA is supporung this research for developing an analytical methodology and
associated tools to assess the stability and performance robustness of muiti-input multi-output
(MIMO), bus-organized digital flight control systems The computation elements and subsystem
modules within the control system may have a multi-rate structure, usually but not always, in a
whole integer ratio. Task synchronization between these elements may range from no
synchronization to synchronization at the CPU clock level.

This research project consists of two phases that are 10 be performed sequentially. The
results of Phase 1 of the project are presenied in this report which addresses the development of a
robustness assessmieni methodology suitable for analyzing a genenic class of MIMO, bus-
organized flight control systems. The future work in Phase 2 is projected to deal with
implementation and validation of the methodology developed in Phase 1. This implementation in
Phase 2 should account for bus data delays. multiple distributed computation delays, and various
degrees of synchronism (or lack thereof) between the distributed processing elements and the data
bus. This report is intended to provide useful information to the engineers and scientists from
different organizations of DoD, NASA, and leading acrospace companies.

The currently available theories and methodologies for robustness assessment of multi-input,
multi-output (MIMO) systems have been reveiwed and thoroughly examined in this report. Recent
literature has shown three major different approaches to address the robust stability and
performance of MIMO control systems. The first approach relies on the structured singular value
(1) and Heo analyses in the framework of Linear Fractional Transformations (LFT) of MIMO
systems that are subjected to uncertainties with known bounds [Doyle (1982)] and [Safonov

(1982)]. The concepts and fundamental results and applications of p-analysis and g-synthesis are

presented in the publications of Doyle and his coworkers [Skogestad et al. (1988), Stein and Doyle
(1991), Balas et al. (1991), Packard and Doyle (1993), Packard et al. (1993)]. The second
approach [Yeh et al. (1985a}, Molander and Willems (1980), Tao et al. (1991)] generalizes the

definition and calculation of gain and phase margins for MIMQ systems analogous to those for




NAWCADWAR-93010-60

single-input, single-output (SISO) systems. The third approach |[Freudenberg and Looze (1986),
Freudenberg (1990)] examines the relatonship between the open loop gain and phase with respect
to the closed loop sensitivity and complementary sensitiviiy functions for SISO systems, and then
formulates heuristic rules for shaping the loop transfer functions for MIMO systems. We have
emphasized the first approach of p-analysis for robustness assessment of MIMO sysiems, which
constitutes the main body of this report. A simulation example has been provided to illustrate 1ts
usage. However, techmical discussions on the second and third approaches are presented in ihe
appendices without any simulation examples.

The stability robustness tests for MIMO systems starts with the basic requirement that the
nominal closed-lcop system must be stable, which can be tested via the muitivanable Nyquist
stability theory. Furthermore, stability robustness tests are also based on the multivariable Nyquist
theory which is briefly described in one of the appendices.

This report 1s organized in five sections and three appendices. Section 2 presents the basic
concept of the structured singular value (u) and its properues along with the techniques of p-
analysis and p-synthesis. The results of simulation experiments for the flight control system of an
advanced aircraft are discussed in Section 3 1o illustrate the efficacy of the p-analysis technique for
MIMO systems. Section 4 descnibes the codes, developed in the MATLAB civironmernit, which
can be used for robustness analysis and synthesis of MIMO control systems. The last section
summarizes and concludes the findings of this research report. Appendix A bnefly describes the
principle of multivariable Nyquist criterion which is essential for understanding the stability of
closed loop control systems. Appendix B provides a general definition and computational methods
for gain and phase margins of MIMO systems in a framework analogous to those for SISO
systems. Appendix C describes the relationship between open loop gain and phase with respect to
the closed loop sensitivity and complementary sensitivity functions for SISO systems, and then

formulates heuristic rules for shaping the loop transfer functions for MIMO systems.
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2. STRUCTURED SINGULAR VALUE (p) ANALYSIS

This section introduces the tcchnique of robustness analysis for MIMO control systems

based on Hoo and p-analysis & synthesis.

2.1. The Structured Singular Value
Figure 2-1 shows how the plant peiturbations representied by A(s), se C, interact with the
finite-dimensional, linear, time-invariant control system M(s) € C"*" which is the based on the
nominal plant model. The input y to the control system M consists of: all exogenous signals,
namely, the reference command(s) to be tracked, disturbances and sensor noise; and the feedback
control input. The output & of the control system M consists of: all plant variables needed for
specifying the stability and performance criteria; and the sensor data feeding the controller. In the
definition of the structured singular value ﬂé(M(so)) of the transfer matnx M(s) ata givens,,
the underlving uncertainty A(s) belongs to a set of matrices, A(s), which is prescribed to have a

block diagonal siructure with the following three characteristics:

+ Type of each block;
» Total number of blocks:
+ Dimension of each block.

In general, there are two types of blocks: Repeated scalar blocks and full blocks. Let two

nonnegative integers, S and F, represent the number of repeated scalar blocks and the number of
fuli blocks, respectively. We introduce positive integers, #,...,r5,my,...,mg, to represent the

dimensions of these blocks such that

+ Theith repeated scalar block is &1, where 1, isthe r; xr; identity niawrix and &, € C

» The jth full block belongs to cmxm

!.I/ é
M

Figure 2-1. The Closed-Loop Control system

Definition 1: The block diagonal structure, A(s) . is cefined as:

A(s)= {dmg[a,u)l,l e85 (M, A1), Ap(5)|: 8, € C, 8, € CTT } cCct )
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The following constraint must be satisfied for consistency of the dimensions:

F
e+ Sm =n @
=1

A
=1

The following notation is introduced in *erms of norm-bounded subsets of A :

BA={AeA:T(A)<]) 3)

Definition 2. ForanyM e C™™  its structured singular value u 4 (M) is defined as:

1
inf{c(4):4 € 4.det(/ - MA) = 0}

Ha(M)= (4)

0 VdeAde(l-Ma)=20

Remark I: The physical significance of p 4 (M) can be interpreted following the feedback loop in

Figure 2-1 where the loop equations are:
& =My, and y = AL ()

As tong as [-MA is nonsingular, the only solution for the loop equations is y =& =0.
However, if I - M4 is singular, then there are infinitely many solutions, and the norms f y |l and

-1

il &1l can be arbitrarily large. Thus the feedback system becomes unstable. Hence, (Ha(M)) is
a measure of the smallest A belonging to a given class of uncertainty sucture that causes
. . -1 .
instability of the above MIMO feedback loop. In other words, (s (M)) is the size of the

smallest "destabilizing” A € A which satisfies the condition of det(/ — MA) = 0. It follows from
the MIMO Nyaquist stability test (see Appendix A) that the zeros of det(l — MA) are the closed-
loop poles of the feedback system. Therefore, if M = M(sy) is a ransfer matrix evaluated at a

-1
point s in the compiex plane, (1 (M))  is the size of the smallest zllowable 4 which moves a

closed-loop pole to that iocation 5.

The structured singular value p 4 (M) of a transfer matrix M can be related to the familiar
linear algebraic quantities if A(s) 1< bounded for every se C as scen below [Doyle et al. (1982)]:

Result 1' it A={01:6eC}(S=1F=0,r; =n). then uy(M)=p(M) where p(M) is the
spectral radius of M.
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Result 2:1f A =C™"(S=0,F =1,m; =n), then Ba(M)=30(M) where G(M) is the largest
singular vaiue of M.
Result 3: For a general A, the following inequality holds.
{6l,:6eClcacC™™ (6)
From the definition of i, and Results 1 and 2 above, 1t follows that:
pM)Sps(M)<o(M) (7)

Since the difference between p and G can be very large, the bounds in Result 3 may not be
sufficiently iight for evaluation of u 4 (M). The following result [Doyle (1982)] snows how these

bounds can be refined by transformations on M that do not affect u 4 (M) but do affect p and &

Resulr 4. The following property ofué(M) holds:
pa(MQ)= 1, (OM) = pp(M) =y (DMD™) (®)

with 0" €Q QAeA F(QA)=G(A0)=T(A) DA =AD (9)

forany Ae 4, De D and Q €  where the sets D and @ are defined as:

D= {diag[D;,...,D‘g,d,lml odp sy | D€ CP¥D; = D] > 0,d; € Ry > 0}

0={0ea:Q"0~ I, (10)
Furthermore the bounds of g 4 (M) in (7) can be tightened to

max

max ~ inf — -1
QGQp(QM)SAeBép(dM)—pé(M)sDEQo(DMD ) (11)

Tt is shown that the lower bound in eq. (11) is an equality [Doyle (1982)]). Apparently, no
analytical techniques exist to find the global maximum of the spectral radius p(QM) although it
may have local maxima. Thus local search cannot be guaranteed to obtain p from its lower bound.
The L software package jBalas et al. (1991)] uses a slightly different algorithm 1o compute the
lower bound. While thore are open questions about its convergence, this algorithm usually works
well and has proven to be an effective tool for approximate computation of M.

The upper bound can be reformulated as a convex optimization problem so that the global

minimurn can be found in principle. Unfortunately, the least upper bound is not always cqual to

5
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K. For block structures A satisfying 25 + F < 3, the least upper bound has been shown to be
always equal to u, (M); and for block structures with 25 + F > 3, u may not attain the least

upper bound. These results are summarized in the Table 2-1 to show for which cases the least
upper bound is guaranteed to be equal to p.

Table 2-1. Conditions for p reaching its upper bound

S= F-- 0 l 2 3 4
0 — yes yes yes no
1 yes yes no no no
2 no no no no no

It is essential to estimate the upper and lower bounds for reliable use of the p theory. The
most important usage of the upper bound is in a computational scheme when it is combined with
the lower bound. The other importart feature of the upper bound is that it can be combined with
H oo conirol synthesis methods to yield an iterative p-synthesis method.

2.2. Linear Fractional Transformation
‘The dynamic system model in Figure 2-2 includes both parametric and non-parametric

uncertainties where the complex matrix M of the nominal system is partitioned as:

M M
y =[ 1 12} (12)
My Mj;

and the uncertainty block structure 4 is compatible in size with M,,. For A€ 4 , the loop

equations are:

z=Mpyd+ Mpp, w=Myuyd+Myp and p=A4Aw (13)
z d
M
r—
w p
—> A

Figure 2-2. Linear Fractional Transformation Structure

6
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Definition 3. The system in Figure 2-2 is well-posed if there exist unique vectors z, w, and p
such that the equation set (13) is satisfied for any exogeneous input vector d. In other words, the
system is well-posed if and only if 7 — M3;4 1s invertble.

Remark: 2: 1f the system in Figure 2-2 is not well-posed, then there are infinitely many solutions
to the loop equation set (13).

Definjtion 4:: If the system in Figure 2-2 is well-posed, then the linear fractional transformation
(LFT), F;(M,4),onM inducedby A €A isdefined as:

.
Fe(M,4) =M+ Mpd (1l -Mpd) My

and (14)
z=Fy(M.A)d is satisfied.

Remark 3: The subscript [ on F, pertains to the "lower” loop of M being closed by 4 € 4 as
shown in Figure 2-2. An analogous formula describes F,(M,4), which is the resuiting matrix

obtained by closing the "upper” loop of M via an uncertainty matrix having z as the input and d as
the output.

Remark 4: In the LFT formulation of eq. (14), the sub-matrix M, represents the nominal plant

transfer matrix; A € B4 , as defined in eq. (3), can be viewed as a norm-bounded perturbation
from an allowable set; and the sub-matrices M;;, My; and M, provide the information of how
the parametric and non-parametric uncertainties influence M, ;.

Given two defined block structures, 4; and 4,, which are compatible in size with M;; and
M, respectively, a block structure A is generated as:

A j{A’ OJA A A €A } (15)
a= ' 4,€48,,4,€4, '
Lo 4.

Now the structured <ingular value p can be computed relative to the above three block

structures, 4, A, and 4,. In general, the following two problems are of interest:

* Determination of whether the LFT is well posed forall 4, € 4, with o(4,) < /: and

* Evaluation of a scalar measure of the transter matnix F; (M, 45 ) relative to the norm-bounded
set of perturbations A4,.

To solve the above two problems by calculating the structured singular values (i), we present two
theorems ({Packard et al. (1993)) and Balas et al. (1991)]) which form the foundatnon of
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p-analysis and synthesis. In this respect, the following notations are used: t;(®) 13 with respect

to 4, up(e)iswithrespectto 4,, and u; »(*) is with respect to A as defined in eq. (15).

Theorem 1 (Theorem 3.4, Balas et al. (1991}, p. 2-13): The LFT F,(M,A4,) is well posed for all
Az € B4, ifandonly if p,(M,, )< 1.

Theorem 2 (Theorem 3.5, Balas et al. (1991), p. 2-13): u; (M) <1 if and only the following

two conditions hold:

* Ha(My) <1
17)

Max /,tI(Fl(M,Az)) <1l

2.3. Review of 4 in the Frequency Domain

The most well known use of [ as a robustness analysis tool is in the frequency domain. Let
M(s) be the nominal transfer matrix of a stable, multi-input, multi-output transfer function of a
linear time-invariant control system. Given the block structure of all perturbations which are
themselves dynamic systems having the structure of 4, the problem is to determine the cffects of
these perturbations on the control system. To accomplish this task, first let = denote the set of all
real-rational, proper, stable, transfer matrices. Associated with any block structure 4, let 6(4)

denote the set of all block diagonal, stable real-rational transfer matrices, with block structure of
A.

6(4)={A(s)eZ: seC,} (18)
. Uncertainties
A(s)
Nominal System} g
M(s)

Figure 2-3. Linear Fractional Transformation in the Frequency Domain

Theorem 3 (Theorem 3 .6, Balas et al. (1991), p. 2-14): For (>0, the feedback loop shown in
Figure 2-3 is well-posed and internally stable forall 4 € ©(4) with 4], < BV if and only if
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ks, = ;ZPR HaM(jw))<p (19)

Remark 5:: Theorem 3 ensures that the peak value on the p-plot of the frequency response
corresponds to the perturbation whose size determines the robust stability of the loop system.

Often performance, in addition to stability of a closed-loop system, must be robust to
perturbations. Typically there are zxogenous disturbances acting on the system which result in
tracking or regulating errors. Under the perturbation, the effects of these disturbances on the error
signals can significantly increase and consequently the closed-loop system performance may not be
acceptable. Therefore, a procedure for robust performance test is necessary. Such a test should

indicate the worst case performance degradation associated with a given level of perturbations. If
the transfer matrix M is stable, real-rational and proper with n, + ng inputs, and n,, + 7, outputs,

then M can be partitioned such that M;; has n, inputs and n,, outputs, M3y has ny wnputs and

n, outputs, and the remaining two submatrices of M have compatible dimensions. Let the block

n

n,x . . .
structure 4; < C™™ 7 of the uncertainties corresponding to the system submatrix M;; be

augmented as follows:

(Al 0 n,xn ]
A = ,- Xy g -

\

The above block structure is set to address the robust performance of the loop shown in Figure

2-4, and the perturbed (closed loop) transfer matrix is denoted by F,(M,A) with A(s)e 8(45)'5)

Theorem 4: (Theorem 3.7, Balas et al. (1991), p. 2-16): Let B> (. Forall A(s)e @(45),5 ) with
1 ,

lall,, < E the loop in Figure 2-4 is well-posed, internally stable, and |F,(M,4)|_<B if and

only if

lua,, M) = wSL;pRﬁlém(M(jw)) <B on

In general, a procedure for p-analysis and p-synthesis of a control system to assure robust
performance design procedure involves several steps:

Step 1: Specification of the closed loop feedback structure.

Step 2: Specification of the modeling uncertainty and performance objectives in terms of
freque~zy-dependent weighting matrices.

Step 3: Construction of open-loop interconnection for the controi synthesis routines.

Step 4: Design of the conuoller for the open-loop interconnection in Step 3.

9




Step 5:

Step 6:

Step 7:

Step 8:

NAWCADWAR-93010-60

Analysis of robustness properties of the resulung closed-loop systems using the structured
singular value. known as p-analysis.

Identification of frequency-dependent marrices, obtained in the p-analysis step, to scale
the open loop interconnecton.

Redcsign of the scaled Hoo controller.

Iteration, if necessary, on Steps S, 6 and 7, known as p-synihesis.

Uncertainties
Als) d Disturbance
w P p Perturbation
u Control

1

Nominal Sysiem [

w Weighted control
M(s)

‘ '+ d z Performance vanable
d
U ! I\om::xal Plant ’ Wp(s) %b
[ Gs) c
‘ Feedback
Controller
K(s)

Figure 2-4. Trunsfer Matrix with Perturbations

2.4. The p—Analysis:

The objective is to analyze a stabilizing controller K for all stable perturbations Ag(s),

with [|4g|, < 1. The controller K must satisfy the following conditions:

* The perturbed closed-loop system remains stable

+ The perturbed weighted sensitivity transfer matnx relating z to d

S(AG) =Wl +G(I +AGW 4 )K ] (22)

has ||S( 4 )||(m < I for all such perturbations.

10
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Uncertainty Models: Given the nominal plant transfer matrix G, itis necessary to specify an
uncertainty weighting matrix, Wde/ , and a normalized variable transfer matrix 4. Both W 4e/

and Ag have to be stable transfer matrices, and there must not be any pole-zero cancellation
hetween Wgel . Ag and G in the closed right-half plane. All of the uncenainties in modeling the
plant should be captured in the normalized, variable transfer matrix Ag, which is used to
parametrize the postulated differences between the nominal model, G, and the actual behavior of
the real piant denoted by G = G(! + AW 4e1) Therefore, the two transfer matrices Wgp; and Ag
parametrize an entire set of plants which must be appropriately controlled by the robust controller
K. The actual plant transfer matrix which includes the modeling errors and disturbances belongs to
the fellowing set:

2 = G(I + AgWyp1): A stable, |Ag| < 1) (23)

The rerformance of the closed loop nominal system is evaluated using the sensitivity matrix,
(I + GK)™! between the disturbance d and the performance variable z in Figure 2-4. The objective
1s to ckr 40 enze good performance in terms of a weighted H oo -norm on this transfer manix.
Given a stable, real-rational transfer matrix Wp, the nominal performance is achieved if

weighting functionWge/ normalizes the specifications A¢; for plant modeling unce aintics, the

Wp(l +(:7K)—]H < 1. Similar to the uncertainty model where the frequency-dependent
frequency-dependent weighting function Wp 1s used to normalize the performance -uch that the
norm of the weighted sensitivity matrix is less than 1.

To analyze the controller of a given plant which is subjected to uncertainties, four different
criteria need to be tested as explained below:

» Nominal Stavility: The control system with the norinal plant in the loop is internally stable.
That is, there are no pole-zero cancellations in the closed right-half s-plane, and the poles of
the closed-loop system transfer matrix must lie in the open left-half s-plane.

» Nominal Performance: The performance objective is satisfied for the nominal plant modelif:

i|Wp(l + (}K)_J“m <] (24)

» Robust Stability: The closed loop system between the perturbation p and the uncertainty
weighted control w =Wge/ u 1s internally stable for all possible plant models G € X, 1€,

11
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'|Wde,KG(l +KG) ||w <l (25)

 Robust Performance: The closed-loop system is internally stable for all G € ¥ and, in
additon, the performance objective is

[Wou+6K)| <1 vGex (26)

Remark 5: Referring to Figure 2-4, nominal performance can be equivalently expressed as:

[M22],, <1 27)
and robust stability as:

laemp)_ <1 (28)

The following are the conditions of robust stability and performance:

s M) <1 and beo(FuM, a))_<1. (29)

Max
which, by Theorem 2, are equivalent to

2M)|_ <1 (30)

2.5. The pu~Synthesis
It follows from the p analysis that the inequality yu(M)SB‘(DMD'l) holds for any
diagonal matrix D with a block structure matching that of A = diag(4y,...,A,). In the p-synthesis

procedure [Packard and Doyle (1993)], the strategy is to pick stable diagonal transfer matrices D(s)
with stable inverses, then to use H,, synthesis to compute the controller K which minimizes

”DFe(C,K)D'lu . The D -matrices may be either constants, with no state dynamics, or

frequency dependent. The latter case would obviously increase the number of siates in the
synthesized controller K, and thereby add their states to those of the closed loop control system,

The p-synthesis procedure can be executed, after the initial cont !'er design, as a two-phase
iterative process called the D-K iteration [Packard et al. (1993)] which is summarized below:




NAWCADWAR-93019-69

Phase 0: Design a controller K(s) based on a given nominal plant transfer matrix (which may
include the performance and stability weighting functions) such that the closed lonp
system is internally stable and satisties the criteria of performarnce specifications.

Phase 1: Execute the p-analysis procedure using the closed loop system. If the robustness
requirement is not satisfactory, then pick a diagonal D(s) so that [)(s) and D7'(s) are
stable, and the upper bound E(DFI(G,K)D'l) is approximately minimized cver the

frequency range of interest.

Phase 2: Execute H,, synthesis to identify a controller K(s) which minimizes the norm

"DFZ(C,K)D'IH of the scaled system. Go back to Phase 1 and repeat the iterative

procedure until the desired condition of }l).Q(F[(G, K)) <1 is achieved over the

frequency range of interest or no further reduction in p is possible.
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3. A SIMULATION EXAMPLE

The (continuous-time) flight dynamic model [Safonov et al. (1981)] of an advanced aircraft,
linearized at the operating condition of 7.62 kiiometers and 0.9 Mach, was selected 1o illustrate the
il-analysis and p-synthesis procedures. The plant matrices are given below.

[-0.0226 -36.6170 -18.8970 -32.0900 3.2509 —0.7626
0.0001 -1.8997 0.9831 -0.0007 -0.1708 -0.0050
0.0123 117200 -2.6316 0.0009 -31.6040 22.3960

A=
0 0 1.000 0 0 0
0 0 0 0 -30.0000 0
L0 0 0 0 0 ~30.0000
B_0000030T [o1 0000
100 00 30 0/° 100010 0

The six plant state variables are forward speed, angle of attack, pitch rate, attitude angle, elevon
actuator position, and canard actuator position; the two control inputs are elevon and canard
signals; and the two output variables are angle of attack and attitude angle. The open loop plant
poles are given in the Table 3-1.. Therefore, the nominal plant is unstable in the open loop with a
pair of complex eigenvalues in the right-half s-plane.

Table 3-1. Plant open-loop poles

Open-loop poles of the plant

-5.6754
6.9002¢e-1+2.48e-1i
6.9002e-1-2.48e¢-11i
-2.5794e-1

-3e+1

-3e+1

A diagram of the closed-loop system, which includes the feedback structure of the plant and
the controller, and ¢lements associated with the uncertainty models and performance objectives, is

snown in Figure 3-1,

The dashed box represents the actual plant, with associated transfer function G. Inside the
box is the nominal model of the airplane dynamics, G, and two elements, W4, and Ag, which
represent the uncertainties in the plant model. The frequency weighting function W,,; 1s assumed

14
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to be known and reflects the amount of uncertainty in the model. The transfer matrix Ag 1s
assumed to be stable and unknown, except for the norm condition, |4g|_ < 1. The performance
objective is that the transfer matrix from d to z be small, in the |¢]|_ sense, for all possible
uncertainty transfer matrices Ag. The weighting tunction W, reflects the relative imponance of

various trequency ranges for which the performance is desired.

teecceccceamcccascaeen—= -
: Perturbed |
L ™46 Plant G @
. \ 'Wp .
. z
.

Feedback

Controller - ‘

K(s}

Figurc 3-1. Closed-Loop System of the Aircraft Control with Uncertainties

The control objective is to identify a stabilizing controller K such that for all stable
perturbations Ag(s), with |4g[_ <1, the perturbed closed-loop system remains stable, and the

perturbed weighted sensitivity transfer matrix,
5(AG) =W o1+ G(1 +AGW 4o )K )™

has |S(Ag )|, <1. It follows from Section 2 that these objective functions are compatible to the

structured singular value framework.

To formulate the problem into the framework of p-analysis, we augment the perturbed plant
as the open-loop system structure of p_block shown in Figure 3-2.

At the initial stage, we used three conventional algorithms for multivanable control systems
synthesis, namely, LQG, H2, and Hoo. Our intention was to compare the robustness of these three
controllers under the same structure and bound of uncertainty blocks and disturbance blocks, and
then formulate a strategy for quartitative evaluation of robust stability and performance. The results

are summarized below.
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weighted
control w perturbation disturbance
P d
Wdel Nominal performance
na variable
Pl
ant _;V:L—P 2
G(s) ]
control
u : |
cITOr S1gnai
e
perturbation p —— [ s weighted control w
diswrbance d = —— p_block f——®= performance variable z
control u  —— ——®  crror signal e

Figure 3-2. Augmented Open-Loop System

3.1. The LQG Controller

In the LQG synthesis, it is well known that the nominal closed-loop system is stable when
controlled by the LQG compensato:. The closed-loop poles of the nominal system are given in
Table 3-2 for the state weighting matrix Qc=CTC; control weighting matrix R¢=Iz: plant noise
covariance matrix Q;=BBT; and measurement noise covariance matrix Rp=10-3 I;. As the nominal
plant model was augmented with the modeling uncertainty blocks, the resulting closed loop system
under LQG control became unstable. The closed loop poles are shown in Table 3-3. This
instability results from the uncertainties imposed on the nominal plant. In that case, the loop
transfer matnx from perturbation p to weighted control w in Figure 3-2 (after closing the loop with
the LQG compensator) is:

w = K(s)(I =G(s)K(s)) " G(s) p

The LQG system does not guarantee that the closed-loop system will remain stable in the presence

of uncertaintes and disturbarices [Doyle (1978)] although LQR guarantees a gain margin of (%,oo)

and phase margin of (~=60°,+60°). In this particular case, the output becomes easily unbounded
because G(s) is unstable in the open loop.

16
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Table 3-2. Closed-loop poles by Table 3-3. Closed loop poles by
LQG Design with by LQG Design with
Exact Parameters Uncertain Parameters
Closed-loop poles by LQG design Closed-loop poles
A(A- BF) (A= LC) of augmented structure
-5.8348+4.4879i | -20.199+28.714i L T .
-5.8348-4.48791 | -20.199-28.714i 52851l
-1.3878 -4.2003e+1 23400
-3.0056e+1 -2.1404e-2 -6.3281
-2.9910e+1 5
-2.9909¢e+1
-3.00e+1
-8.271%e-1
-2.9987e+1
7.0703¢-3
-2.1401e-2

3.2. H; and H . Controller Analysis Using

Two controllers were synthesized via H, and H_ norm optimization to stabiliz¢ the

angmented open-loop structure in Figure 3-2. Based on the plant model and the desired
performance of the closed loop control system, the respective weighting matrices, W, and W,

for uncertainty and performance were chosen to be:

s+ 3 0 1
Wyer = s+ 300 c43 and V'/p = S+g.03
5+ 300 L s+0.03

These two controllers were compared using the p-analysis criteria described in Section 2. The
selected set, Sp, of frequency points at which the control systems were analyzed and synthesized
consists of £ =60 points logarithmically equally spaced between the decades of 10731010, The
results for threc different cases are shown in Tables 3-4, 3-5, and 3-6, respectively. The
uncertaiinty and the external disturbances in Case 1 are represented by two full blocks, ie.,
4, c C**?, and A, C C¥?. This implics that the uncertain parameters in the plant could be
perturbed arbitrarily in any form within a given bound. The parametcr perturbation in the designed
compensator is analogous to the concept of gain margin and phase margin in the SISO systems.

As seen in Table 3-4, both H, and H_ controller: do not show good nominal and robust
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performance (|M,|_ and max j(M(w;)) are larger than 1) aithough the H_ controller is superior
i<

to the /, controller from these perspectives. However, the stability robustness 1s good for both

controllers because [max H(M;(w;)) 1s smaller than 1 for each.
i<t

Tabie 3-4. Comparison of the controllers (Case I)

Convoller| nominal robust statibilnty robust performance
Algorithm | performance
WMok, | max upo | 14l | max pemen) | N4l
H, 2.5968 0.3237 3.0893 2.7834 0.3593
H_ 1.5154 0.3234 3.0918 1.8184 0.5499
Table 3-5. Comparison of the controllers (Case II)
8= (812:8 P2y 4,cC? B
Conuoller nominal robust statibiluty robust performance
Algorithm | performance
M2, | max pMppci)) | NAke | max pMcws)) | 18I
N 15i<t I<i<t
H, 2.596% 0.3233 3.0936 2.6894 0.3718
H_ 1.5154 0.3222 3.1035 1.6106 0.6209
Table 3-6. Comparison of the conirollers (Case 1I1)
A, = rdiag(b;.6,]:6,.62 CCZX;’} 4, cc?*?
Controlier |  normunal robust statibiliity robust nerformance
Algorithm rformance
ool | max uMppcoipy| VAl | omax peMw)y | 14k
l1<i<t I1<ist
upper: upper:
H 2.5968 0.3236 3.0904 2.8917 (0.35%4
2 lower: lower:
0.3236 2.7822
upper: upper:
H 1.5154 0.3233 3.0929 1.8896 0.5525
= lower: lower:
0.3233 1.8098
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Next, for Case 1l and Case III, the block 4, was allowed to have two different structures
while the full block structure of A, is unaltered. This can be interpreted as the plant uncertainty

structure is changed but the external disturbances and the performance requirements remains
unchanged. In Case 11, it was assumed that 4, ={8/,:6 € C}. This means that the uncertain

6, G
parameters are only uniformly perturbed diagonally. In Case IIl. 4, = {‘: 01 5’ ] 6,.65¢€ C}
2

implies that the uncertain parameters are independently perturbed.

All three cases of p-analysis in Tables 3-4, 3-5 and 3-6 show that both 4, and H_
controllers possess reasonably good robust stability but not good nominal and robust performance.
However, the H_ controller has a better nominal and robust performance. On the other hand, the
robust performance of the H_ controller is sensitive to the uncerainty structure change, and
apparently its robust performance should improve if the parameters are perturbed uniformly and
diagonally.

The p-analysis package [Balas et al. (1991)] is capable of calculating the upper and lower
bounds of 4. As mentioned in Section 2, the lower bound p is not exact although theoretically an
cyuivalence exists. The upper bound of the exact W can be reached for only some specified
uncertainty structures as seen in Table 2-1. The upper bounds of the numericaliy computed p
match the exact value of p for é,eszz and A;={6l,:6€C) in Tables 3-4 and 3-5,

respectively. Howevcr, neither the upper bound nor the lower bound is guaranteed to match the

]
61 0].’51,5266‘}.

exact value of y as seen in Table 3-6 because tor 4, = {[ 05
2

3.3. p-Synthesis and D-K Iteration

‘The H, optimization provides a unique controller while H_ optimization uses an iterative
procedure to obtain an approximate solution [Doyle et al. (1989)]. The p-analysis could be used to
guide the iterative process of H_ optimization, and this process is called the D-K iteration {Packard
etal. {1993)]. Asdescribed in Section 2.5, any linear time-invariant finite-dimensional stabilizing
controller can be used to initiate the D-K iteration. However, in the subsequent steps of D-K
iteration, only H_ synthesis has been used to update the controller, and p-analysis is used to
evaluate the designed controller at each iteration. In tne example of this report, the controller was
initially designed via H_ optimization and, after two passes of D-K iteration, the updated controller

exhibited significantly superior robustness properties. In each of the two passes, a 4th order

polynomial fit was chosen for the scaling matrix D(s). The results are summarized below in Table
3-7.
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Table 3-7. Comparison of the initial and final conwollers given by D-K iteration

D-K nominal robust statbiliity robust performance
rformance
iterauon M M . A M(w: Al
teraton M2l nax WM (7)) jal. max (M () la
1nital 1.5154 0.3224 3.0918 1.8184 0.5499
0
1 0.9157 0.1933 5.1742 1.0175 0.9828
final 0.6573 0.1592 6.2800 0.7509 1.3317
2

Table 3-7 shows that robust stability of the final controller is significantly enhanced since

rlrslas)l(;t(M”(w,)) 1s much smaller than 1. The nominal performance and robust performance are

also significantly improved since both |M2,||_ and max u(M(w;)) are made less than 1 in final
Isist

version of the control system synthesis.

The perturbation data obtained from the initial controller analysis were used to build the
transfer matrix A¢;(s). If the perturbation data obtained from the final controller analysis is used,

the control loop clnsed by the initial controller may become unstable. The rationale is that the final
controller has better stability robustness than the initial one so that |4 (s)]_ of the final controller

is greater than that of the initial controller.

Figures 3-3 and 3-4 show the frequency domain simulation of the initial He controller and
final Hoo controller, respectively, to compare their robust performance and stability. The plant
transfer matrix 1s G(s) = é(s)/l +48G(5)W y4o1(5)], where Ag(s) is a stable, real-rational transfer
matrix constructed according to the uncertainty perturbations obtain~d from the p-analysis data.
Since (45(s)) = (p(M”(.s)))'l Vs ©¢ Sp where Sp is the selected set of {requency points
for numerical computation of p, the closed-loop system has the worst case perturbations among
the set of actual plant transfer matrices.

Figures 3-3 and 3-4 compare the singular values of the nominal loop transfer matrices and
nominal sensitivity matrices, respectively. The loop with the final controller has better
performance than that with the initial controlier because the minimal singular values of the loop
transfer matrices of the final controller is higher at the low frequency range. Another interesting

point is that the range of singular values from maximum to minimum is much larger for the final

20
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controller than that for the initial controller. It is important to note that the conventional robust
performance rule is very conservative under the assumption that all the singular values at the fow
frequency range must be high. However, since the final controlier is constructed based on the p
theory, it i1s much less conservative than a controller synthesized via the conventional techniques.
So the robustness constraints are relaxed and each singular value can be varied within a large range
while the performance of the final controller as shown in Figure 3-3 is still higher. On the other
hand, the maximum singular value of the loop transfer matrix of the final controlier is higher than
that of the initial controller. But the robust stability of the final controller, as shown in Table 3-7, is
better than that of the initial controller. This is due to the same reason that p-theory is much less
conservative so that the stability bound for the nominal plant can be relaxed while keeping the
stability robustness high. The example given in this report shows the difference between the
nominal stability and robust stability, and the difference between the nominal performance and
robust performance. For multivariable system controller analysis and synthesis, we should not
only consider the nominal stability and performance but also the robust stability and performance.
However, the benefit of the robustness is gained at the expense of an increased order of the
controller in the D-K iteration. For real ime implementatior, a reduction of the controiler model
order [Balas et al. (1991)] might be necessary.
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3.4. The Control Analysis And Synthesis Procedure Using W

Procedures for numerical computations in p-analysis and u-synthesis are discussed in view
of the analytical results of Section 2 and the simulation results of Section 3. Given a nominal
plant, the perturbed parameter and uncertainty structure, the design specifications, and a set of
MIMO controllers (that are already designed), the following procedural rules are presented for
analysis and comparison of these controllers in view of their nominal and robust stability and
performance.

Step 1: Break the loop at selected points according to the uncertainty structure and perturbed
parameters;,

Step 2: Select the weighting functions for stability and performance according to the design
specifications and knowledge of the uncertainty structures;

Step 3: Build the augmented open-loop system structure which includes the nominal plant, and the
weighting functions;

Step 4: Use each of the designed controllers to close the loop and construct the augmented M-block
for p-analysis;

Step 5: Check whether each poie of the M-block is located in the left half s-plane. Choosc those
controllers that are stable.

Step 6: Use the p-analysis program (MU_ANLY.M described in Section 4) to compare |M;|.

for each design and choose those controllers that most closely satisfy the nominal
performance requirements.

Step 7: Compare (M), for each design and choose those controllers that most closely satisfy
the robust stability.

Step 8: If the robust performance is the major concern of the design objective, then [lu(M )] of the
candidate controllers should be compared tirst. Otherwise, use different uncertair.,
structures and repeat p-analysis to verify if the robust stability of the controller is sensitive
to a change in the uncertainty structure. Choose those controllers that most closely “atisfy

the robust performance or arc relatively less sensitive to changes in the uncertainty
structure.

Step 9: Conduct a time domain simulation on the controllers that have passed the above tests for the
actual closed-loop system structure under the worst case perturbations. Select those
controllers which provide a good performance of the closed-loop system.

23
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4. DESCRIPTION OF THE COMPUTER CODE

A nurnber of programs are written in the MATLAB environment [Moler et al. (1987); Balas
et al. (1991)] for robustness analysis with any multivariable plant model and uncertainty blocks.
The program MU_EXAMP .M demonstrates the usage of the above programs by analyzing the
flight control system of an advanced aircraft. discussed in Chapter 3 and following the program
structure shown in Figure 4-1. However, to use these programs in the specific p-analysis and p-
synthesis problem, the user should write his or her own program.

MU_INIT.M

This program creates an interconnection struciure of a given open loop system. It must be run
before any controller design and p-analysis.

Input: A, B, C, D - nominal plant state space matrices.
Gdel - gain of uncertainty weighting function.
Gp - gain of performance weighting function.
Output:  W(e] - uncertainty weighting function.
Wp - performance weighting function.

p_block - interconnected structure of the open loop system.

Since the interconnection structure is specific for each individual system, the program written
inside MU_INIT M should be changed in each case. The user should know how to build the
interconnection structures using the MATLAB function "sysic” [Balas et al. (1991)]. Figure 4-2
gives the interconnection structure used in the example given in Chapter 3. Three different
methods, namely, LQG, H3 and Heo for the initial step of controller design are provided in the
programs called MU_LQG.M, MU_I12.M aud MU_HINF.M, 1cspectively.
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Figure 4-1. Control Systems Analysis and Synthesis Program Flow Char
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MU _LQG.M

This program camries out LQG controller design. It can be used as the initial step of the p-
synthesis.

Input: A, B, C, D - plant state space matrices

Qc, R - weighting matrices for LQR design

Qf. Rf - plant disturbarce and measurement error covariance, respectively
Output:  F - controller gain

L - observer gain

k_comp - compensator structure

M_plant - closed-loop system structure as shown in Figure 4-2.

.................

PR Y I O Y N R R

M_plaat

Figure 4-2. The Closed-Loop System M_plant.
MU_H2.M

This program carries out H2 controller design. It can be used as the initial step for p-
synthesis.

Input:  p_block - open-loop system structure

Output: k_comp - compensator structure

M_plant - closed-loop system structure
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MU_HINF.M
This program does Heo controller design. It can be used as the initial step for p-synthesis.
Input:  p_block - open-loop system structure
Output:  k_comp - compensator structure
M_plant - closed-loop system structure

The next step after controller design and evaluation is p-analysis as seen in the flow chart of
Figure 4-1.

A
Ay

M |e—]

Figure 4-3. The Structure Used in the p-2nalysis
MU_ANLY.M
This program carries out p-analysis.
Input:  M_plant - closed-loop system structure
blk1 - block structure of A} as shown in Figure 4-3.

blk2 - block structure of A2 as shown in Figure 4-3.

4 0
bik - block structure of A =
0 4,

Output:  frequency domain plot of G(M3;), and |M5;] _ as the measure of nominal performance.

frequency domain plot of 4(M);), max(u(My))), and [l4;]|  as the measure of robust
stability

frequency domain plot of u(M), max(u(M)), and |4]_ as the measure of robust
performance.

At this stage the user may choose to further improve the controller via the D-K algorithm of p-

synthesis or directly exarnine the performance of controller via time-domain simulation.
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Note: ~ When typing the input of blk1, blk2, and blk from the keyboard, it is required to use the
same format as prescribed in | Balas et al. (1991) pp. 4-70).

MU_DK.M

This program dose D-K iteration as a part of y-synthesis.

Input:  p_block - original open-loop system structure
rpdvec - © matrices obtained by p-analysis

rpsens - sensitivity function of pu(+) obtained by p-analysis

4 0
blk - block structure of A =
0 4

Output: k_comp - compensator structure with increased order during the iteration. This is
designed according to the new open loop system structure shown in Figure 4-4.

M_plant - closed-loop system structure with increased order during the iteration.

-~ -
~-—— D) p_block |la—] D (s)
-~ new ptl———
- patl— —
p_block

Figure 4-4. Angmention via D-Matrices in the D-K lteration
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MU_SIMU.M

This program does time domain simulation of the closed loop system with the worst perturbation
as a stable transfer matrix.

Input:  M_plantl - closed-loop system structure of the initial design
in_pvec - perturbations of the initial design obtained from p-analysis
in_bnds - upper and lower p bounds of the initial design obtained from p-analysis
M_plant2 - closed-loop system structure of the final design
fin_pvec - perturbations of the final design obtained from p-analysis
fin_bnds - upper and lower u bounds of the final design obtained from p-analysis

n_block - number of blocks to be approximated by transfer matrix

4 0]

hlk - block structure of A =
0 Az_'

Output: M_perntl - closed-loop system structure of the initial design with the worst perturbation as
shown in Figure 4-5.

M_pent2 - closed-loop system structure of the final design with the worst perturbation
u - ume domain input signal
y1 - output signal of the inital design

y2 - output signal of the final design

£ 3
el
.-----—\.ao---—"

Figure 4-5. Closed-Loop System with the Worst-Case Perturbation
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MU _FRQ.M

This program plots singular values of loop transfer matrices and sensitivity matrices for a
closed-loop system.

Input:  ap,bp,cp,dp - plant state space matrices
ak,bk,ck,dk - compensator state space matrices
ak2,bk2,ck2,dk2 - second compensator state space matrices

n_comp - number of closed-loop systems. If n_comp=1, then only one loop is plotted, if
n_comp =2, then two loop functions are plotted in one graph.

Output:  sx1 - singular values of the loop transfer matrices
syl - singular values of the loop sensitivity matnices

sx2 - singular values of the second loop transfer matrices, if n_comp=2

syl - singular values of the loop sensitivity matrices, if n_comp=2
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5. SUMMARY AND CONCLUSIONS

This report presents the results of control systems analysis and their applications to control
systems synthesis for high performance aircraft, and provides a proven, tractable and portable
methodology to quantify the stability margins and robustness of highly integrated digital fly-by-
wire control systems. The Hoo—based p-analysis approach has been recommended for
quantitative evaluation of robust stability and performance of multi-input multi-output (MIMO)
control systems. This approach for control systenis evaluation offers an alternative to the notions
of conventional gain margin and phase margin.

A survey of recent literature has shown three inajor different approaches to quantitatively
evaluate the robust stability and performance of MIMO control systems. The first approach relies
on the structured singular value (1) and Heo—analyses in the framework of Linear Fractional
Transformations (LFT) of MIMO systems that are subjected to uncertainties with known bounds.
The seceor) approach generalizes the definition and calculation of gain and phase margins for
MIMO systeins anaiogous to those fer single-input, single-output (SISO) systems. The third
approac’ examings the relationships between the open loop gain and phase with respect to closed
¢, - siivity and corrplementary sensitivity functions for SISO systems, and then formulates
heu:istic rules for shaping the loop transfer functions for MIMO systems. The first approach of jt-
analysis for robustness asscssment of MIMO systems constitutes the main body of this report
because it has significant advantages over the remaining two approaches as discussed below.

The second approach attempts to generalize the conventional concepts and computation
algorithms of gain margin and phase margin for MIMO systems. The concepts of gain margin and
phase margin were initially based on gain parameter perturbations of a given controller for SISO
closed-loop systems. The algorithm, generalized for MIMO systems in the second approach, can
only deal with parameter variations of a constant gain matrix. Since a MIMO plant is generally
represented by a stabilizable, real-rational transfer matrix, the system gain margin is not uniquely
defined. Therefore, analysis of MIMO control systems based on gain margin and phase margin is
not a straight-forward extrapolation of that of SISO systems. In contrast, the concept of structured
singular value (u) deals with all types of bounded parametric and non-parametric uncertainties.
Apparently p-analysis appears to be much mcre general than any of the reported algorithms for
gain margin and phase margin evaluation. The p-analysis can handle not only the parameter
variations in the dynamic controller K(s) but also the uncertainties in the plant model and
parameter perturbations anywhere in the loop. To summarize, pi-analysis 1s capable of quantifying
the stability and robustness of the closed-lcop system under any destabilizing factor. Furthermore,

the algorithms in the second approach are relatively more conservative because singular values of
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the transfer matrices are often used as the norm to bound the perturbations, and the parameters are
only allowed to vary diagonally. In contrast, p-analysis does not suffer from these problems
because the notion of structured singular value is directly based on the Nyquist stability theorem.

Although the third approach which is based on loop transfer matrices is more general than the
second approach for MIMO control systems, it only provides a qualitative description of the
stability and performance of closed-loop systems. Apparently, quantitative analysis of stability and
perforr -nce can be reliably carried out by the algorithms based on u. Therefore, u-analysis is
conside =d to be the most effective tool for control systems evaluation as reported in open
iiterature.

Results of simulation experiments using the flight dynamic model of an advanced aircraft
have been presented to demonstrate how the nominal and robust stability and performance can be
evaluated via p-analysis. Furthermore, it is shown that both stability and robustness can be
improved using the tools of p-synthesis. A software package has been developed in the
environment of MATLAB for analyzing robustness of MIMO control systems. This package is
built upon the commercially available p-Analysis and Synthesis Toolbox [Balas et al. (1991)].
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APPENDIX A
THE PRINCIPLE OF MULTIVARIABLE NYQUIST STABILITY CRITERION

Let N(A,f(s).C) denote the number of clockwise encirclements of the point A in the

complex piane by the image of the clockwise contour C under the mapping f(s). Using this
notaton, the principle of the argument can be written as:

N@O,f(s),C)=2Z-P
where Z is the number of zeros of f(s) inside C, and P is the number of poles of f(s) inside C.

Suppose f(s)= fi(s)f,(s) and there are no pole-zero cancellations between fy(s) and
f2(s) Then, the Nyquist stability criterion is stated as follows:

N(O, f115)f2(5).C) = N(O, f1(5).C)+ N(O, f2(s).C)

Proof of the Nyquist Stability Criterion:
Let the contour Dy enclose right half plane. The closed Joop system is stable if and only if
N(O,®.(5),Dg)=0
Theretore, N(0,®(s)det(l +G(s)),Dg) = N(O,®,(s),Dg)+ N(0,det(1 + G(s)),Dg) =0.
Let P, ,; Genote the number of unstable open-loop poles of G(s). Then

N(O,d)o[(S).DR):‘ Pu'o[ and N(O,det(l+G(S)),DR)= "Pu,ol

+ .
R(s) E(s) Y(s)
) - G(s) —

Figure A-1. Multivariable Fecdback System

Given the plant in Figure A-1, the relationship between the open loop and closed loop
characteristic polynomials is as follows [Desoer et al. (1977)]:
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O, =Dy det[] +G(s)] (A-1)
or P, =dets! —A,]) (A-2)

where @, =det[s] — A] is the open loop characteristic polynomial, A and A, are the system
matrices of the open loop system, G(s), and the closed loop system, G(s)[l+G(s)}“1,

respectively.

The Nyquist stability criterion states that the closed-loop system is stable if and only if the
number of counter-clockwise encirclements of the origin by the image of the clockwise Nyquist
contour D, under the mapping det(/ + G(s)) equals the number of unstable open-loop poles of the
open-loop transfer matrix G(s). The proof of this criterion is based on the theory of complex
analysis as outlined earlier in this Appendix. Several researchers [Yeh et al. (1985a), Molander and
Willems (1980), Tao et al. (1991), Lehtomaki et al. (1981)] have attempted to extend the concepts
of gain and phase margins of SISO systems to address the stability robustness of MIMO systems.
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APPENDIX B
APPROACH 2: MULTIVARIABLE GAIN MARGIN AND PHASE MARGIN

Now we introduce the pertinent definitions and some of the useful algorithms for the afore-
mentioned two approaches of robustness assessment.

Some diversity and ambiguity exist in defining the MIMO gain and phase margins. The
common practice of one-loop-at-a-time stability margins fails to account for the simultaneous
variations in MIMO feedback systems and hence may not be acceptable as relative stability
measures. The norm-bounded robustness criteria guarantee closed-loop stability but they do not
explain how the individual elements of the control gain matrix may be varied without destabilizing
the closed-loop system. To this effect, Yeh et al (19854) introduced two different definitions of
stability margins.

Definition B-1: independent gain margins are limits within which the gains of all feedback loops
may be varicd simultaneously and independently without destabilizing the system whilz the phase
angles remain at their nominal values. Independent phase margins are limits within which the phase
angles of all feedback loops may be varied simultaneously and independently without destabilizing
the system while the gains of all feedback loops remain at their nominal values. However, these
stability margins, if computed via the singular-value based robust stability criteria, tend to be very
conservative.

Definition B-2: Uniform gain margins are limits within which the gains of all feedback loops
may be varied uniformly without destabilizing the feedback system while the phase angles remain
at their nominal values. Uniform phase margins are limits within which the phase angles of all
feedback loops may be varied uniformly without destabilizing the system while the gains remain at
their nocminal values.

Remark:: A major difference between MIMO and SISO systems is that the stability margins of
MIMO systems vary relative to the point where the complex loop gains are measured. For a general
feedback system, if the gain perturbations are calculated at input of the plant, then the simuitaneous
perturbation in cach loop may be represented by a diagonal perturbation matrix L(s) preceding the
plant G(s).

For independent margins:  L(jw) = diag[b;(w)e11'®) by(w)e 420, b /@) (B-1)

For uniform margins:  L(jo) = ﬁ(w)ejofw)l (B-2)
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There are several difterent ways te calculate the stability margins {Yeh et al. (1985a),
Molander and Willems (1980), Tao et al. (1991)]. However, we discuss the following three
algorithms in this repoit.

Robustness Bound For Perurbation Girrors: [Yeh et al. (1983a3)

Let G(s) and G(s) represent the nominal and perturbed open-loop transfer matrices,

respectively, and the multplicative and inverse multiplicatve gerturbations are given as follows:

= _ -] T o
E(s)zJ ~[G(s) G(s)]G (s) for multiplicative perturbations

(B-3)
l[G'l (s)~ G‘l(s)]G(s) for inverse multiplicative perturbations

In eqs. (B-1) and (B-2), the gain and phase perturbations L(s)= E(s)+ /. The singular value
based robustness tests are given as foilows {Lehtomaki et al. (1981)):

- -1

olL-1l< Q[/ +G ] for multiplicative perturbation, and (B-4)
= ;-1

0{1‘ - 1] <a<gl+G]l asl forinverse multiplicative perturbation. (B-5)

It has been shown [Yeh et al. (1985b)] by using the inverse Nvquist criterion and the Nyquist
criterion that the robustness tests for (B-3) are:

m:“m,-[L P m:"la,-[l +G™1]  for muliipticative perturbation, and (B-6)
mzull,-[L“l —l}’ <a Sm;n!).i[l +G) 0saa<]

for inverse multiplicative perturbation. (B-7)

The independent gain margin (IGM) is obtained by substituting (B-2) intn (B-4) and then letting

the phase angles ) = 6, =---= 6, =0, and g = Q‘[l +G_1]
1-ay < fi(w) <1+ g Vi (B-8)
Letting the gains ) = B, =---= f§, =1, the independent phase margin (IPM) is obtained as:
-2s5in"Nay/2) < 6,(w) < 2sin"Nay/2) Vi, ay <2 (B.9)
and ~f<@(w)<n Vi, a;>2 (B-16)
36
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Similarly, substituting (B-3) into (B-S) and the IGM and IPM for inverse multiplicative
perturbations are obtained as:

1
<fB(w)< —— Yi here oy = o}/ + G|, and
ra A0S { where oy = o[/ +G], an (B-11)

and  -2sin"'()/2) < 6;(w) < 2sin"N(ay/2) Vi (B-12)

Substituting (B-3) into (B-6) and (B-7), the uniform gain margin (UGM) and uniform phase
margin (UPM) can be obtained as:

min _
For mularlicative perturbation: ay = i |/‘Li[1 +G l]' under the following constraints:

l1-ay < Blw)<l+a (B-13)
“2sin”V(a/2) < B(w) < 25in"MNap/2)  ap <2 (B-14)
-n<@(w)<r ag >2 (B-15)

min . ‘
For inverse multiplicative perturbation: @y = i |4;{1 + G} under the following constraints:

<Bl(w)<
1+ay 1-ag , (B-16)

~25in" N ap/2) < B(w) < 25in" Ve /2) (B-17)
The advantages of using this algorithm to calculate MIMO gain margins and phase margins are that
relatively simple formulae can be derived from the robustness bound concepts. Although the
independent gain and phase margins are rather conservatively based on singular values, the
combined use of IGM, IPM, UGM and UPM vyi.lds a less conservative estimate of the stability
perturbing region in the gain space and phase space {Yeh et al. (1984)]). However, the major
disadvantage is that these perturbations are only constrained at diagonal elements of the
perturbation matrix There is apparently no discussion about the off-diagonal terms.

Perturbation With Nonlingar Cone Boundary [Molander and Willems (1980))

For MIMO linear-quadraric regulators, there 1s Kalman's inequality which implies that this
kind of controllers possess a 609 phase margin, infinite gain margin, and 50 percent gain reduction
tolerance [Safonov and Athans (1977)]. Using this result, Molander and Willems (1980)
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developed a procedure for synthesizing state feedback control of multivariable systems with
specified gain and phase margins. Considering the linear time-invariant finite-dimensional systems:

xX=Ax+Bu (B-18)

with xe R", ue R™, and the pair (4, B) being controllable, and the desired input being given by
the linear ume-invariant state feedback control law:

u=-LTx (B-19)
The above equation (B-19) is called a robust control law with robustness sector (K;,K;) with

=0 LK) S 1<K; £ oo if the closed-loop system is globally asymptotically stabie. The sector
condition 1s illustrated in Figure B-1 for the single-input case. The control input is given by

u=-f( x,1) (B-20)

with f:R™ x R — R™ being any nonlinear function satisfying the following condition:

s .
:I:(f(o,t)-Klﬂy(f(o.t)-K20)<0 (B-21)
1) —1/2(K
Or, equivalently, .::[:lf(ot) /|0(1 l+K2)01<%(K2 - K,) (B-22)
A K,o
(S, 1)

/ o

Figure B-1. An Illustration of the Secior Condition
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The robustness requirements also allow for an interpretation in terms of gain and phase
margins and gain reduction tolerance (defined below). The control law (B-19) has a gain margin g
(g21) 1if the closed-loop system is globally asymptotically stable for all control laws:

u=-ALTx (B-23)

where A is any symmetric matrix with eigenvalues 1 € 4, < g. The system is said to have a phase
margin ¢ (0 < ¢ < n) if it is globally asymptotically stable for all control laws (B-23) with A
being any unitary matrix possessing eigenvalues A; = exp(j@;) with |#;] € ¢. It is said to have a
gain reduction tolerance p if it is globally asymptotically stable tor all control laws (B-23) with A
any symmetric matrix with eigenvalues (I —p) £ 4; < 1. The relationship between robustness
sector (K;,K) and the gain and phase margins are:

g=K, (B-24)
p=(1-Ky)x100 (B-25)
COS((P): K1K2 +1

Using the multivariable control system stability theory, a methodology has been developed
[Molander and Willems (1980)] to synthesize the linear quadratic control law under prescribed gain
and phase margins. A similar synthesis procedure has been developed for the discrete-time state
feedback control law by [Lee and Lee (1986)].

The advantages of the above control algorithm are that the synthesis is based on the
framework of the general state feedback control law, which can be directly obtained with a given
robustness sector by solving the matrix Riccati equation. The major disadvantage of this algorithm
is that 1t is apparently restricted to the fuil-state feedback control case and does not address the
general compensator structures.

Unity-Feedback Multivarjable Control System (Tao et al. (1991))

In this method, the boundaries of gain and phase margins of multivariable control systems
are obtained by decomposition into augmented open-loop transfer functions. Then the characteristic
equations are formulated and the stability margins are tested. Consider the multivariable feedback

control systems shown in Figure B-2.
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RE©) 1 Y(s)
> G(s)=N(s)D (s)

R(Q)=[I‘l(S) r(s)...1(s)} T
2 m

Y(s)=ly () y (s) .y (8)) ¥
1 2 m

{

ri(s) N;(s)
Di(s)
¥

y.(s)
]

1=1,2, .. m.
Figure B-2. Multivariable System Represented by Augmented Open-Loop Transfer Function

The proper transfer function G(s) is:

’G“ Go ... G; .. Gl,ﬂ
Gy Gp Gy, Gom
G(s)=| | : : C = N(s)DVs)
Gy G ... G; .. Gy
LGm] sz G.m e Gmn- (B_27)

where the relatively coprime polynomial matrices, N(s) and D(s), are expressed as:




ny a2

n1  n22
N(s)=

ny o N

Ll Pm2

and

(dq O

0 dy
D(s) = :
=16 o

(0 o
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-
ny; Rm
ny; N2y
ny; Nim
P Pmp |
0 0
0 0

dg 0
0 ... d.,]

The characteristic equation of the closed loop system is

det[D(s)+ N(s)] = det

(d +npy nyy
) dey +n
ni n;2

L "ml "m2

n; Rim
ny; nam
dgi + njj Rim
R dep + Ny |

(B-28)

(B-29)

(B-30)

Applying the determinant property [Kreyszig (1972)), eq. (B-30) can be decomposed into the

following m different expressions
det| D(s)+ N(s)) = det| Do;(s)) + detf{ No;(s)] = 0,

where detf{No;(s)] anq det| Do;(s)) are defined as:

det| No;(s)] = det

[dey +nyy np
n) dey +ny2
niy n;7

L Pm) nm2
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dep + Rym |

(B-31)
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—dcl+n“ n» .. 0 N W
nmy  da+ny 0 nom
det|Dyi(s)) = det| ‘ : " =0
¢ ] n;y n;o da' Nim
L Ny nm2 ces 0 dCIl + nmm_ (B'33)

Now the augmented open-loop transfer function (AOLTF) is defined as:

_ det[ No;(s)] _Ni(s)
dei{Do;(s)]  Dj(s)

£0i(s)
(B-34)
For a unity-feedback mxm multivariable system, there are m AOLTFs. Each of the gpi(s)is a
transfer function of y;(s)/7(s) effected by the ith {open) unity-fcedback loop, and can be
considered as an open-loop transfer function of an unit feedback control system shown in Figure
B-2. The gain and phase margins of an unity-feedback multivariable control system are, in fact, the
gain margins (GM) and phase margins (PM) of all AOLTFs. For an m xm unity-feedback
multivariable control system, there arc m sets of gain margins and phase margins. The calculation
of each set is based upon the corresponding AOLTF and can be checked by Nyquist plots.

The advantage of the above synthesis algorithm is that the plotting methods used in SISO
feedback loop stability tests can be used directly and therefore the gain and phase margins of each
AOLTEF are easily formulated. The relatonship of the stability margins of AOLTF with parameter
perturbations of the original system is discussed by Tao, Cheng and Han (1991). These parameters
could be the original system gain perturbations. However, further work is needed is to find the
direct relationships of the stability m..rgins of AOLTFs with the original control system.

Each of the above three algorithms is aim-d at calculation of the MIMO gain and phase
margins analogous to those of SISO systems. However, the ultimate goal is to shape the closed-
loop functions such that it satisfies the performance and stability robustness requirements. Since
there is a direct relationship between the open 'oop gain and phase and closed-loop characteristics
for SISO systems, the gain margin and phase margin are two parameters to be adjusted to shape
the closed-loop transfer function. There could be other parameters to adjust the closed loop transfer
functions for MIMO systems. Following this concept, Freudenburg and Looze (1988) have
investigated the MIMO closed-loop system properties, and developed rules for shaping the closed-
I¢ Hp sensitivity function and complementary sensitivity function by adjusting the open loop gain,
phase and directions.

42




NAWCADWAR-93010-60

APPENDIX C
APPROACH 3: MULTIVARIABLE LOOP SHAPING

Classical "loop-shaping" design methods proceed directly with manipulation o open loop
gain and phase to alter the feedback properties of the system [Freudenburg and Looze (1986),
Freudenburg (1990), Freudenburg and Looze (1988)]. Clearly, one reason for the success of
these methods is that, for a SISO system, open loop gain and phase can be readily related to the
feedback properties. The loop transfer function L(jw) has the following properues:

IS(jw)| <<1
|IL(jw)|>>1<  and
T(jw)=1 (C-1)

and

|T(jw)| <<
|L(jw)<<1¢&  and
S(jw) =1 (C-2)

-

At frequencies for which the open loop gain is approximately unity, feedback properties depend
crigcally upon the open loop phase:

|IL(jw)| =1 IS(jw)| >>1
and = and
ZL(jw)=*180°  |T(jw)>>1 (C-3)
Heuristic rules used in design: First, large loop gain y..lds small sensitivity an.i good disturbance

rejection properties, although ncise appears directly in the system output. Second small loop gain
is required for small noise response and for robustness against large multiplicative uncertainty.
Finally, at frequencies near gain crossover (i.e., |L( jw)| = 1), phase of the open loop system must
remain bounded sufficiently far away from +180° to provide an adequate stability margin and to
prevent amplifying the disturbances and noise.

Generalization of Scalar Concepts to Multivariable Systems

Under certain conditions, multivariable systems behave sufficiently like SISO systems such
that classical results can be easily extended. First, it is assumed that the plant to be controlled has a
well-conditioned transfer function matrix. It is also necescary to assume that the disturbances are
injected into the system at the same loop-breaking point at which uncertainties exist, and that the
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levels of uncertainty, noise, and disturbances are approximalely equal in all loops ot the system.
Hence, the disturbance and noise signals should satisfy the following conditions of upper bound:
ld(jo)| s Mg(w) Vo and
In(jw)| < M, (w) Vo (C-4)
where Mx( ) is an upper bound of the norm of a given transfer matrix x(jc).

We assume that: (i) each of the outputs of the system is significant; and (ii) the response of
each to disturbances and noise 1s desired to be small. Therefore, the following assumptions need to
sausfied:

atio) < My (0) Yo and
lyn(io) < My (@0) Ve (©-5)

The above assumptions imply that design specifications can be translated into the bounds:

G[S,(jw)] < My(w), Vo and (C-6)
O[S,(iw)] € My(w), Yw (C-7)

Since there is a conflict between achieving these two goals at the same frequency:
Sp(s)+Ty(s) =1 (C-8)

there is a trade-off between the feedback properties governed by S, and those governed by

The lack of directionality properties and structure in the systems implies that this trade-off is
essentially the sare as that in the S1SO case. In special cases, the heuristic rules relating the open
loop gain to feedback properties can be extended to MIMO systems. Let L(jw) e C"™" be a
transfer function evaluated at a given frequency . The level of gain experienced by an input to the
system described by this transfer function will generally depend upon the direction in which the

input lies. Using the singular value decomposition:

n
L= Zl'l‘ll"}f("' (C‘g)
i=l

If the open loop transfer matrix has largc gains in all directions or small gains in all
directions, the following analogs to (C-1) and (C-2) are useful in assessing the feedback properties

of the system:
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ofS,(jw)] <<1
oL, jw)]>>1e and
T,(jw)=! (C-10)
and _
olT,(jw)] << 1
olL,(jw)) <<l e and
So(jw) =1 (C-11)

Multivariable Design Specifications

Suppose that sensors in some loops of the system have become noisy at a lower frequency
than the sensors in the other loops. This situation can be mathematically modeled by assuming that
the sensor noise can be written as the sum of a structured and an unstructured component:

n(s)=ng(s)+ny(s) (C-12)
The structured noise n, is assumed to lie in a k-dimensional subspace N, ¢ C”", and satisfies the
following bound:
ol <
InstioN < My, (@), Vo (©13)
The remainisy unstructured component of the noise satisfies the bound:
Ina(jw)} < M, (0 Yo (C-14)

Suppose that the ratios M,, (w)/My(w) and M, (w)/M;(w) are as depicted in Figure C-1. Let
the orthogonal projections onto N the subspace which contain the structured noise, and onto

NJL, its orthogonal complement, be denoted by P, and PSL, respectively. Then the design

specifications for this system should satisfy the following conditions:

0} Sof jw)] << 1 w < w '(C-15)
IT.(juP)<<l w2 w (C-16)
(_J{SO(jw)l}l] <<l w=<sw (C-17)
olT,(jw)] << 2wy (C-18)
alSo(jw)}s M(w) Vo (C-19)

o[T,(jw)] < My(w) Vu

(C-20
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Figure C-1. Relative Levels of Sensor Moise to Disturbance Inputs.

The above specifications could be satisfied by requiring the loop gain to be large in the directions
for which the sensitivity is requircd to be small, and small in the directions for which the
complementary sensitivity is required to be small. To describe the gain in different directions, the
singular value decomposition of the loop transfer matrixL is partiticned as:

L=V, Ul +v,z,u¥ (C-21)

wheie V,;,U; € C"""" Vv, U, eC"X""_k), I = diag[al,....,ok]' and

The decomposition requires that inputs to the open lcop systemn lying in the column space of U;
are amplified by the level of gain represented by the singular values  and appear as outputs in the

column space of V; This partition suggests that L be referred to as consisting of a higher gain
subsystem V,Z,U,H and a lower gain subsystem VZZZU‘!I. The matrix U,-”V_, provides a

measure of the alignment of the column spaces of U; and Vj, and can be intcrpreted as a measure
of interactions between the high and low gain subsystems.

Motivated by the above discussion, consider the limiting case in which o £;] and o{Z;] in
the subsystem decomposition are allowed to become sufficiently large and sufficiently small,
respectively. The following theorem shows that this strategy would achieve sensor noise rejection
in an (n-k)-dimensional subspace and disturbance rejection in a k-dimensional subspace

corresponding to the directions of small and large loop gain, respectively.
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Theorem C-1: Let derlU! v,] # 0. Then, if

o> E{(u{'vl)“‘]

(C-22)
and
e 1 Hy,
o{2,) << oUWy (C-23)
the sensitivity and complementary sensitivity matrices satisfy the following conditions:
Sensitivity mawix: O[S = Sapp] << 1 and E{T = Tapp] <<1 (C-24)
where
Hy N hott
Sapp = UZ(V2 UZ) v
-1
= U?("zllllz) ( 2”U])U1” + U2U€I
~1
=KW viv) v vy
, Hy Y H
Complementary sensitivity matrix: app = V1 (U 1 Vl) U
H Hy "V H H
=uy(ufw)uf'v) ol + o
-1
- #H H H H
= VI(UI Vl) (Ul V2 )Vz +Wh (C-25)

The above theorem allows feedback properties to be approximated when open loop gain is
both large and small in different directions at the same frequency. However, one must take caie to
correctly identify the input and output directions of the high and low gain subsystems with the
subspace of C" in which the signals are to be rejected.

Next consider two additicnal cases: when the gain is assumed to be cither (a) large in some
directions or (b) smali in some directions, and in each case, no assumption is placed upon gain in
orthogonal directions, the following two theorems show that there exists an analogue to scalar gain
crossover frequency range in which knowledge of gain alone is insufficient to allow approximation
of feedback properties; hence it is necessary to consider some sort of phase information.
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Theorem C:2. Let defUf'Vi]# 0 and dedvi'v, + 2| % 0. Then,f

e

st -5 ot

- S{(ot) uta)mlv e« 2) )}

(C-26)
then the sensitivity and complementary sensitivity matrices satisfy the following conditions:
5‘{7‘ —Ta,,p] <<1 and 5‘[8 —Sapp] <<1 (C-27)
-1
where  Sg,, = UZ(V;{”Uz +2) Vé’
and
A HUN " o (uH Y s (v e\ H
Tapp B1=Sapp = H(Ul W oG +02(V2 bz) Lz(VzHUz*Ez) V2 (C-28)
Theorem C-3. Let derfV4'U,]0 and defr +U{'v;5)] % 0. Then, if
H
| o
. -1
p , H ~lH
o[ 2] << min g{[l -(vu)( +Uf'vz) (uf vz)] (vzHuz)}
- -1 -1
1/ 0{(V2HU2) (W )1+uf'wz) (uff vl)}
t (C-29)
the sensitivity and complementary sensitivity matrices satisfy the following conditions:
5‘{5 - Sapp] <<1and .o-{T - Tapp] <<
-1 H Hy, 1 H -l
where Sg,p =1 ~Typp =UY (V3'Uy) Vi +viUfivy) (1 +U{'v, ) U
Top, =i+l 5 Ul C-30
app = V1=1(1 U1 V147) U (C-30)
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Remark: Theorems C-3 and Theorem C-2 show that the conditions:
o(£2] << oUs'2] and o £2]>> o{Ui'vy)

and the conditions:
o[%y]>> 5’[(U1HV1)"1} and ofZ} | << _a_[(UIHVI)"]

fail to hold at the same frequencies. Since the knowledge of the open loop singular value gains
does not provide sufficient information to allow feedback properties to be approximated, additional
information about the phase is necessary. This area requires further research.

In conclusion, the third approach by Freudenberg and Looze (1986), (1990), and (1988)
have introduced a general concept of the relationship of the gain, phase and direction of the open
loop transfer matrix with the closed-loop sensitivity and complementary sensitivity matrices. The
rules developed in each of the three theorems can serve as a guide for design and robustness

testing. However, more direct rules still need to be developed for robustness assessment of MIMO
systems.
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